본문으로 바로가기

Camera

category AI/Computer Vision 2021. 4. 8. 15:43

Camera

1) Pin-hole camera

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

    - Pin-hole camera model is a widely used camera model in computer vision.

    - It collects light through a small hole to the inside of dark box or room.

    - Light passes through a single point, the camera center, C, before it is projected onto an image plane.

 

2) Lens camera

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

    - Lenses map bundles of rays from points on the scene to the sensor.

 

3) Common feature

    - only use central rays.

    - assume the lens camera is in focus.

 

4) difference

    - pin-hole camera : focal length is distance between aperture (hole) and sensor.

    - lens camera : focal length is distance where parallel rays intersect.

 

Camera matrix

1) 개요

    - A camera is a mapping from the 3D world to a 2D image.

 

2) 수식적 이해

$$x = PX$$

$$\begin{bmatrix}x\\y\\z \end{bmatrix} =\begin{bmatrix} p_{1}& p_{2} & p_{3} & p_{4} \\p_{5}& p_{6} & p_{7} & p_{8}\\p_{9}& p_{10} & p_{11} & p_{12} \end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1 \end{bmatrix} $$

    - X : homogeneous world coordinates

    - P : camera matrix

    - x : homogeneous image coordinates

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

$$P = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} I & | & 0\end{bmatrix}$$

 

3) Generalizing the camera matrix

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

    - In particular, the camera and image origin may be different.

$$P = K[I|0], \; K = \begin{bmatrix} f & 0 & c_{x} \\ 0 & f & c_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

    - c_x, c_y : image point where the optical axis intersects the image plane.

 

4) world to camera coordinate system transformation

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

$$\tilde{X}_{w} - \tilde{C}$$

    - translate the world coordinate to camera coordinate

$$R \cdot \tilde{X}_{w} - \tilde{C}$$

    - rotate the translated point to be aligned.

$$\tilde{X}_{c} = R \cdot (\tilde{X}_{w} - \tilde{C})$$

    - The above equation is the heterogeneous coordinates.

    - In homogeneous coordinates,

$$\begin{bmatrix} X_{c} \\ Y_{c} \\ Z_{c} \\ 1 \end{bmatrix}=\begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix}\begin{bmatrix} X_{w} \\ Y_{w}\\ Z_{w} \\ 1 \end{bmatrix} \;\; or \;\; X_{c} = \begin{bmatrix} R & -R\tilde{C} \\ 0 & 1 \end{bmatrix} X_{w}$$

 

5) General pinhole camera matrix

    - combine camera matrix in camera coordinate system with camera matrix aligned with world coordinates.

$$x = PX_{c} = K[I|0]X_{c}, \;\;\; X_{c} = \begin{bmatrix} R & -R\tilde{C} \\ 0 & 1 \end{bmatrix} X_{w}$$

$$x = PX_{w}$$

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf
ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

$$P = K[R|t], \;\; t = -RC$$

    - R : rotation matrix describing the orientation of the camera.

    - t : 3D translation vector describing the position of the camera center.

    - K : intrinsic calibration matrix which describes the projection properties of the camera.

    - if the camera and world have the same coordinate system, [R|t] will be an identity.

 

Perspective distortion

1) 개요

    - pinhole camera and all of the more general cameras have perspective distortion.

    - Perspective distortion magnification changes with depth.

ref : http://www.cs.cmu.edu/~16385/lectures/lecture10.pdf

 

Orthographic projection

1) 개요

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

    - distance from the center of projection to the projection plane is infinite

    - constant magnification is equal to 1.

    - no shift between camera and image origins.

    - world and camera coordinate systems are the same.

 

Geometric camera calibration

    - find a camera matrix


ref.

www.cs.cornell.edu/courses/cs5670/2019sp/lectures/lec10_cameras.pdf

www.cs.cmu.edu/~16385/lectures/lecture10.pdf

'AI > Computer Vision' 카테고리의 다른 글

RANSAC  (0) 2021.04.06
Geometric Transformation  (0) 2021.04.04
Hough Transform  (0) 2021.04.01
Image Resampling (Image pyramids)  (0) 2021.03.30
SIFT (Scale invariant feature transform)  (0) 2021.03.26