Joint Probability Distribution (결합확률분포), Convolution
Joint probability distribution (결합확률분포) 1) 정의 - 두 개 이상의 확률 변수를 고려한다. $$f_{xy}(x, y) = P[X=x, Y=y]$$ - Joint pmf $$p_{xy}(x, y)= P[X=x,Y=y]$$ $$0\leq p_{xy}(x, y) \leq 1 \;\; for \; all \; x \; and \; y$$ $$\Sigma_{x}\Sigma_{y}p_{xy}(x, y) = 1$$ - joint pdf $$f_{XY}(x, y) \geq 0 \;\;\; for \; all \; x \; and \; y$$ $$P[(X,Y) \in A] = \int \int_{A} f_{XY}(x, y)dxdy$$ $$\int_{-\infty}^{\infty} \int..